1 Here are two solids.

Cylinder

radius 4 cm height 10 cm

Hemisphere

radius 6 cm

volume of a hemisphere = $\frac{2}{3} \pi r^3$ where r is the radius

Which solid has the grea	ter volume?	
You must show your wo	rking.	[4 marks]
Answe	r	

2 Here is a small cuboid and a cube.

Small cuboids and cubes are stacked in layers to make larger cuboids.

Here is a cuboid made with four layers.

The pattern is continued to make a cuboid with volume 336 $\,\mathrm{cm}^3$

How many **cubes** are used?

[3 marks]

Answer

3 Here is a cuboid.

Work out the volume.	[1 mark]
Answer	cm ³

[4 marks]

4 A ball contains 5000 cm³ of air.

More air is pumped into the ball at a rate of 160 ${\rm cm^3}$ per second.

The ball is full of air when it becomes a sphere with radius 15 cm

Volume of a sphere = $\frac{4}{3}\pi r^3$ where r is the radius

Does it take less than 1 minute to fill the ball?

You **must** show your working.

	<u>-</u>

5

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

A bowl is a hemisphere with radius 12 cm

Water is poured into the bowl at a rate of 325 cm³ per second for 8 seconds.

Does the water fill more than 70% of the bowl?

You must show your working.

,	3		[4 marks

6 Here is cuboid A.

Cuboid B is made from two of cuboid A.

volume of A: volume of B = 1:2

Matthew says,

"surface area of A: surface area of B must be 1: 2 because B is made of 2 of A."

Is Matthew correct?

Tick **one** box.

		Yes	No	Cannot tell
Give a rea	ason fo	or your answer.		[2 marks

7 (a) Here is a cuboid.

w, x and y are **different** whole numbers.

The total length of all the edges of the cuboid is 80 cm

The volume is **greater** than 200 cm³

Work out one possible set of values for w, x and y.

volk out one possible set of values for w, x and y .	[2 marks

7 (b) Here is a solid cube.

Circle the expression for the $\it total$ surface area in $\it cm^2$

[1 mark]

36*a*

54*a*

 $36a^{2}$

54*a*²

8 Here is a cone.

8 (a)

Curved surface area of a cone = $\pi r l$ where r is the radius and l is the slant height

Beth tries to work out the curved surface area in terms of π

Curved surface area of the cone = $\pi \times 5 \times 12$ = $60\pi\,\text{cm}^2$

What mistake has she made?

[1 mark]

Vork out his es	stimate.					[2 ma
	Answer				cm ²	
eth uses π	= 3.14 to ea			base of the	cone.	
eth uses π s Beth's estima ick a box.		stimate the	area of the		cone.	
s Beth's estima		stimate the	area of the	stimate?	cone.	
	ork out his es	/ork out his estimate.				